Thursday, August 23, 2018

Jupiter events 21 at Juno Waves and other observatories

-----
With many thanks from Victor Herrero-Arrieta to the Teams at Juno Waves, NASA Planetary Data System, STEREO A,  WIND, and the Tax Payers of the United States of America.
With many thanks, Victor Herrero-Arrieta acknowledges the Nançay Radio Observatory / Unité Scientifique de Nançay of the Observatoire de Paris (USR 704-CNRS, supported by Université d’Orléans, OSUC, and Région Centre in France) for providing access to NDA observations accessible online at http://www.obs-nancay.fr

------------------------------
Introductory Radio Astronomy links:
http://herrero-radio-astronomy.blogspot.com/2015/06/introductory-radio-astronomy-references.html
Jupiter:
https://en.wikipedia.org/wiki/Jupiter
Magnetosphere of Jupiter:
https://en.wikipedia.org/wiki/Magnetosphere_of_Jupiter
Kurth et al. 2017, "The Juno Waves Investigation" 46 page pdf:
https://link.springer.com/content/pdf/10.1007%2Fs11214-017-0396-y.pdf
Connerney et al. 2017, "The Juno Magnetic Field Investigation" 100 page pdf:
https://link.springer.com/content/pdf/10.1007%2Fs11214-017-0334-z.pdf
"Properties of Decameter IIIb-III Pairs" Melnik et al. 2018 18 page pdf:
https://arxiv.org/pdf/1802.06238
"Solar Type IV bursts at frequencies 10-30 MHz" Melnik et al. 2018 51 page pdf :
https://arxiv.org/pdf/1802.06249
Links to many Sun Earth Jupiter posts:
http://herrero-radio-astronomy.blogspot.com/2017/12/sun-earth-jupiter-20171223.html
------------------------------
Jupiter events at Juno Waves and other observatories :
http://herrero-radio-astronomy.blogspot.com/2017/10/jupiter-events-6-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2017/11/jupiter-events-7-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2018/01/jupiter-events-8-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2018/01/jupiter-events-9-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2018/02/jupiter-events-10-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2018/02/jupiter-events-11-at-juno-waves-and.html 
http://herrero-radio-astronomy.blogspot.com/2018/03/jupiter-events-12-at-juno-waves-and.html 
http://herrero-radio-astronomy.blogspot.com/2018/03/jupiter-events-13-at-juno-waves-and.html 
http://herrero-radio-astronomy.blogspot.com/2018/03/jupiter-events-14-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2018/04/jupiter-events-15-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2018/04/jupiter-events-16-at-juno-waves-and.html 
http://herrero-radio-astronomy.blogspot.com/2018/05/jupiter-events-17-at-juno-waves-and.html 
http://herrero-radio-astronomy.blogspot.com/2018/05/jupiter-events-18-at-juno-waves-and.html 
http://herrero-radio-astronomy.blogspot.com/2018/05/jupiter-events-19-at-juno-waves-and.html
http://herrero-radio-astronomy.blogspot.com/2018/07/jupiter-events-20-at-juno-waves-and.html

Jupiter events at the University of Iowa Space Physics LWA1 Data Project
http://herrero-radio-astronomy.blogspot.com/2017/08/jupiter-events-1-at-university-of-iowa.html
http://herrero-radio-astronomy.blogspot.com/2017/08/jupiter-events-2-at-university-of-iowa.html
http://herrero-radio-astronomy.blogspot.com/2017/09/jupiter-events-3-at-university-of-iowa.html
http://herrero-radio-astronomy.blogspot.com/2017/09/jupiter-events-4-at-university-of-iowa.html
http://herrero-radio-astronomy.blogspot.com/2017/09/jupiter-events-5-at-university-of-iowa.html
http://herrero-radio-astronomy.blogspot.com/2017/09/jupiter-events-6-at-university-of-iowa.html
http://herrero-radio-astronomy.blogspot.com/2017/09/jupiter-events-7-at-university-of-iowa.html
http://herrero-radio-astronomy.blogspot.com/2017/11/jupiter-events-8-at-university-of-iowa.html

Examples of Jupiter events observed by Juno Waves :
http://herrero-radio-astronomy.blogspot.com/2017/05/examples-of-jupiter-events-observed-by.html
------------------------------
Flux computation example , Nancay Decametric Array :
25 MHz , 100 data units , source in beam axis
calibrated with 50.71 dB 300 kelvin calibrator , ~ 165 data units
Flux = NoiseTemperature*Boltzman/Bandwidth/EffectiveArea
NoiseTemperature = 10^(DataUnits*0.046) kelvin
Boltzman = 1.38E-23 joule/kelvin
Bandwidth = 1E5 hertz
EffectiveArea at 25MHz ~ 3.3E3 meter^2
area is proportional to cosine^2(angle from line of sight to antenna axis) , antenna axis point to 20 degrees south of zenith
Flux = 3.98E4*1.38E-23/1E5/3.3E3 = 1.66E-27 watt/hertz/meter^2
--------------------------------

1: 

2:

3:

4:

5:

6:

7:


8:


9:


10:


11:


12:  About the origin of Jupiter's magnetic field

I take note of the links to 26 presentations given at the Juno Europlanet Meeting 2018:

https://www2.le.ac.uk/departments/physics/people/leighfletcher/ras-juno-europlanet-meeting-2018

The presentation by Chris Jones, University of Leeds in the United Kingdom, shows 16 slides about Jupiter's magnetic field, slide 3 describes the origin of Jupiter and Saturn magnetic fields in the very different metallic regions of hydrogen and helium:


13:


14:


15:


16:


---

Thursday, August 2, 2018

Sun Earth Jupiter 20180330

...

Many thanks to: Taxpayers of the United States of America, the Juno, STEREO, WIND Spacecraft Teams, the Panetary Data System Team,  Prof. Dr. Kazumasa Imai Kochi National College of Technology Kochi Japan, Trinity College Dublin Ireland Astrophysics Group, United States NOAA SWPC, NASA Solar Dynamics Observatory Teams, Lockheed Martin Solar Laboratory, SOTERIA Project

With many thanks, Victor Herrero-Arrieta acknowledges the Nançay Radio Observatory / Unité Scientifique de Nançay of the Observatoire de Paris (USR 704-CNRS, supported by Université d’Orléans, OSUC, and Région Centre in France) for providing access to NDA observations accessible online at http://www.obs-nancay.fr 
Many thanks to: Taxpayers of France, French Air Force, Nancay Decametric Array Team at the Nancay Radio Astronomy Station of Paris Observatory. 

More on this subject: 
http://herrero-radio-astronomy.blogspot.com/2018/02/sun-earth-jupiter-20180205.html
http://herrero-radio-astronomy.blogspot.com/2017/12/sun-earth-jupiter-20171223.html    
http://herrero-radio-astronomy.blogspot.com/2017/10/sun-earth-jupiter-20171021.html    
http://herrero-radio-astronomy.blogspot.com/2017/09/sun-earth-jupiter-20170926.html    
http://herrero-radio-astronomy.blogspot.com/2017/08/sun-earth-jupiter-20170831.html
http://herrero-radio-astronomy.blogspot.com/2015/08/links-to-monthly-sun-earth-jupiter-posts.html?m=1
 
------------------------------
Introductory Radio Astronomy links:
http://herrero-radio-astronomy.blogspot.com/2015/06/introductory-radio-astronomy-references.html
Jupiter:
https://en.wikipedia.org/wiki/Jupiter
Magnetosphere of Jupiter:
https://en.wikipedia.org/wiki/Magnetosphere_of_Jupiter
Kurth et al. 2017, "The Juno Waves Investigation" 46 page pdf:
https://link.springer.com/content/pdf/10.1007%2Fs11214-017-0396-y.pdf
Connerney et al. 2017, "The Juno Magnetic Field Investigation" 100 page pdf:
https://link.springer.com/content/pdf/10.1007%2Fs11214-017-0334-z.pdf
Links to Juno Waves and LWA1 Jupiter spectra:
http://herrero-radio-astronomy.blogspot.com/2018/03/jupiter-events-14-at-juno-waves-and.html
Links to Sun Earth Jupiter posts:
http://herrero-radio-astronomy.blogspot.com/2017/12/sun-earth-jupiter-20171223.html
--------------------------------
Flux computation example , Nancay Decametric Array :
25 MHz , 100 data units , source in beam axis
calibrated with 50.71 dB 300 kelvin calibrator , ~ 165 data units
Flux = NoiseTemperature*Boltzman/Bandwidth/EffectiveArea
NoiseTemperature = 10^(DataUnits*0.046) kelvin
Boltzman = 1.38E-23 joule/kelvin
Bandwidth = 1E5 hertz
EffectiveArea at 25MHz ~ 3.3E3 meter^2
area is proportional to cosine^2(angle from line of sight to antenna axis) , antenna axis point to 20 degrees south of zenith
Flux = 3.98E4*1.38E-23/1E5/3.3E3 = 1.66E-27 watt/hertz/meter^2
--------------------------------
1:
 2:
3:

4:

5:  Cycle 24 seen at 10.7 cm - the weakest solar cycle in 70 years !!


6: The Maunder 70 year sunspot number minimum- 1645 to 1715 :(
From Fig 38, Hathaway 2015 "The Solar Cycle", many thanks
The Sun is a mystery inside an enigma !!
Study also: "Leif Svalgaard's Research Page"  http://www.leif.org/research/



7:

8:

9: About the latitude distribution of sunspot area centroids during solar cycles
From Fig 31, Hathaway 2015 "The Solar Cycle", many thanks
Generally more than 20 degrees at the beginning, less than 10 degrees at the end


10:

11:

12:

About the beginning and end of Solar Cycle 24

Please read also:
https://en.wikipedia.org/wiki/Solar_cycle_24

Studying the Dominion Radio Astrophysical Observatory (Penticton British Columbia Canada) 10.7 cm adjusted monthly average radio flux, I find December 2008 had 66.89 solar flux units (1E-22 watt/hertz/meter^2):

http://www.spaceweather.ca/solarflux/sx-5-mavg-en.php

It was the lowest adjusted monthly average flux during the cycle 23 to 24 transition period.

I declare December 2008 is my beginning of cycle 24, because I prefer a Radio Astronomy method rather than sunspot method :)

If cycle 24 is an exactly 11 year cycle, I expect it will end December of 2019, using my 10.7 cm flux criterion.
---

Wednesday, August 1, 2018

Links to recent Solar Radio Science Highlights by Eduard Kontar

My many thanks to Dr. Eduard Kontar, University of Glasgow School of Physics and Astronomy,
and the Community of European Solar Radio Astronomers, for the following highlights.

About Dr. Eduard Kontar:
http://www.gla.ac.uk/schools/physics/staff/eduardkontar/

About CESRA:
http://www.astro.gla.ac.uk/users/eduard/cesra/?page_id=181

"The Community of European Solar Radio Astronomers (CESRA) is an informal organization of European
scientists to stimulate research of the outer solar atmosphere by means of radio waves and any
other suitable diagnostics."

"...CESRA publishes Highlights of Solar Radio Physics aka CESRA Nuggets approximately every two weeks at http://cesra.net. These short communications are written in the language accessible to a non-expert in the specific area and designed to keep solar and heliophysics communities informed and up-to-date about current research.
The highlights can be followed, discussed, commented and shared via
http://www.facebook.com/solarcesra/
http://twitter.com/CESRA_community    ..."


--------------------------------- 

An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a
Streamer-like Solar Structure
by Ruisheng Zheng et al.*
http://cesra.net/?p=1925

Long-lasting injection of solar energetic electrons into the heliosphere
by N. Dresing et al.
http://cesra.net/?p=1916

Statistical Analysis of Solar Events Associated with storm sudden
commencements in the magnetosphere
by K. Bocchialini et al.*
http://www.astro.gla.ac.uk/users/eduard/cesra/?p=1895

Solar Radio Burst Associated with a Falling Bright EUV Blob
by M. Karlický et al.*
http://cesra.net/?p=1870

Properties of Decameter IIIb–III Pairs
by V. Melnik et al.*
http://cesra.net/?p=1875

Modeling of Solar Atmosphere Parameters Above Sunspots Using RATAN-600
Microwave Observations
by A.G. Stupishin et al.*
http://cesra.net/?p=1853

LOFAR observations of Fine Fundamental and Harmonic Structures in Solar
Radio Bursts
by Xingyao Chen et al*
http://cesra.net/?p=1848

Solar Type-IIIb Radio Bursts as Tracers for Electron Density
Fluctuations in the Corona
by V. Mugundhan et al.*
http://cesra.net/?p=1831

New evidence for a coronal mass ejection driven fast drifting type II
radio burst
by K. Ashnu et al.
http://cesra.net/?p=1818


Association of radio polar cap brightening with bright patches and
coronal holes
by C. L. Selhorst et al.*
http://cesra.net/?p=1807

Dressing the Coronal Magnetic Extrapolations of Active Regions with a
Parameterized Thermal Structure
by Gelu M. Nita et al.
http://cesra.net/?p=1798

Solar ALMA observations: constraining the chromosphere above sunspots
by M. Loukitcheva et al.*
http://cesra.net/?p=1777

Synergy of stochastic and systematic energization of plasmas during
turbulent reconnection
by Th. Pisokas, L. Vlahos and H. Isliker
http://cesra.net/?p=1773

The statistical relationship between global EUV waves and other solar
phenomena
by D. Long et al.*
http://cesra.net/?p=1763

Estimation of a CME magnetic field strength using observations of
gyrosynchrotron radiation
by E. P. Carley et al.*
http://cesra.net/?p=1701

Propagation and Interaction Properties of Successive Coronal Mass
Ejections in Relation to a Complex Type II Radio Burst
by Y. D. Liu et al.*
http://cesra.net/?p=1693


Observations of solar radio burst fine structures with LOFAR
by E. Kontar et al.*
http://cesra.net/?p=1675

VLA Measurements of Faraday Rotation through Coronal Mass Ejections
by Jason E. Kooi et al*
http://cesra.net/?p=1671

Solar Prominence Modelling at ALMA Wavelengths
by A. Rodger and N. Labrosse
http://cesra.net/?p=1647

Small electron acceleration episodes in the solar corona
by T. James et al.
http://cesra.net/?p=1635

Critical Fluctuations in Beam-Plasma Systems and Solar Type III Radio
Bursts
by G. Thejappa  and R. J. MacDowall
http://cesra.net/?p=1628

Acceleration and Storage of Energetic Electrons in Magnetic Loops in the
Course of Electric Current Oscillations
by V.V. Zaitsev and A.V. Stepanov
http://cesra.net/?p=1593

Flare SOL2012-07-06: on the origin of the circular polarization reversal
between 17 GHz and 34 GHz
by Altyntsev et al.*
http://cesra.net/?p=1578

Observations of a radio-quiet solar preflare
by A. Benz et al.*
http://cesra.net/?p=1562

Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool
by A. Anastasiadis et al.*
http://cesra.net/?p=1551


Exploring the potential of microwave diagnostics in SEP forecasting
by P. Zucca et al.
http://cesra.net/?p=1540

Solar plasma radio emission and inertial Alfven turbulence
by O. Lyubchyk et al.
http://cesra.net/?p=1525

EUV-invisible reservoir of solar energetic particles
by G. Fleishman et al..
http://cesra.net/?p=1499

Traveling Ionospheric Disturbances as Huge Natural Lenses: Solar Radio Emission Focusing Effect
by A. Koval et al.
http://cesra.net/?p=1480

Wavelet-based characterization of small-scale solar emission features at low radio frequencies
by A. Suresh et al.
http://cesra.net/?p=1473

Probing the Temperature Structure of the Solar Chromosphere with ALMA
by C. Alissandrakis et al.
http://cesra.net/?p=1457

Oscillation of solar radio emission at coronal acoustic cut-off frequency
by T. Zaqarashvili et al.
http://cesra.net/?p=1450

Siberian Radioheliograph: First Results
by S.V. Lesovoi et al.
http://cesra.net/?p=1426

The 30 cm solar radio flux: a new proxy for upper atmosphere specification
by Thierry Dudok de Wit and Sean Bruinsma
http://cesra.net/?p=1423

Particle acceleration and turbulence during a solar flare
by E.P. Kontar et al.
http://cesra.net/?p=1409

Solar wind density turbulence from 10 to 45 solar radii
by K. Sasikumar Raja et al.
http://cesra.net/?p=1385

Multi-Loop Structure of Nonthermal Microwave Sources in a Major Long-Duration Flare
by V. Grechnev et al.
http://cesra.net/?p=1375


Comparison of alternative zebra-structure models in solar radio emission
by G.P. Chernov et al.*
http://cesra.net/?p=1341

Microwave emission as a proxy of CME speed in ICME forecasting
by Carolina Salas Matamoros, Ludwig Klein and Gerard Trottet
http://cesra.net/?p=1336

The Brightness Temperature of the Quiet Solar Chromosphere at 2.6 mm
by Kazumasa Iwai et al
http://cesra.net/?p=1325

How Electron Beams Produce Continuous Coherent Plasma Emission
by H. Che, M. Goldstein, P. Diamond, and R. Sagdeev
http://cesra.net/?p=1310


Radio Diagnostics of Electron Acceleration Sites During the Eruption of a Flux Rope in the Solar Corona
by Eoin Carley et al.
http://cesra.net/?p=1188

Solar Science with the Atacama Large Millimeter/Submillimeter Array — A New View of Our Sun
by S. Wedemeyer
http://cesra.net/?p=1221

Quasi-periodic acceleration of electrons in the flare on 2012 July 19
by Jing Huang et al.
http://cesra.net/?p=1214

Large-scale simulations of Langmuir Wave Distributions Induced by Electron Beams
by H. Reid and E. Kontar
http://cesra.net/?p=1209

Full paper at:
"Langmuir Wave Electric Fields Induced by Electron Beams in the Heliosphere"
http://adsabs.harvard.edu/abs/2016arXiv161107901R
https://arxiv.org/pdf/1611.07901

Emission of radiation by plasmas with counter-streaming electron beams
by L. F. Ziebell et al.
http://cesra.net/?p=1200

Simultaneous near-Sun observations of a moving type IV radio burst
and the associated white-light CME
by K. Hariharan et al.
http://cesra.net/?p=1169

Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves
by C. R. Goddard et al.
http://cesra.net/?p=1159

Diagnosing the Source Region of a Solar Burst on 26 September 2011 by Using Microwave Type-III Pairs
by Tan B. L. et al.
http://cesra.net/?p=1138

Acceleration of electrons in the solar wind by Langmuir waves produced by a decay cascade
by Catherine Krafft and Alexander Volokitin
http://cesra.net/?p=1072

Source regions of the type II radio burst observed during a CME–CME interaction on 2013 May 22
by P. Mäkelä et al.
http://cesra.net/?p=1042

...